Chinese Chemical Letters Vol. 13, No. 10, pp 1011 – 1012, 2002 http://www.imm.ac.cn/journal/ccl.html

Thermoregulated Phase-separable Ru₃(CO)₁₂/PETPP Complex Catalyst for Hydrogenation of Styrene

Yan Hua WANG*, Xiao Wei WU, Fang CHENG, Zi Lin JIN

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012

Abstract: Thermoregulated phase-separable $Ru_3(CO)_{12}/PETPP$ (PETPP=P[p-C₆H₄O (CH₂CH₂O)_n H]₃, n=6) complex catalyst was first applied in the hydrogenation of styrene. Under the conditions: P(H₂)=2.0MPa, T=90°C, styrene could be completely transferred and the yield of ethylbenzene reached up to 99.5%. After simple decantation, the catalyst could be reused for ten times without decreasing in activity.

Keywords: Thermoregulated phase-separable catalysis, hydrogenation, styrene, ruthenium.

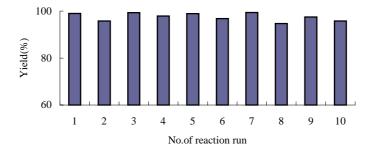
The basic problem in homogeneous catalysis is the separation of catalyst from the reaction mixtures. To overcome this drawback, a number of methods have been developed. One of them is to attach homogeneous catalyst to supports ¹. An alternative and well used approach involves liquid/liquid biphasic catalysis in which the catalyst and product reside in different phases and separation of the products is achieved simply by phase separation². Recently, a concept of thermoregulated phase transfer catalysis has been developed by Jin^{3,4}.

Based on the critical solution temperature (CST) of nonionic tensioactive phosphine ligand in toluene, a novel liquid/liquid biphase catalytic concept termed as thermore-gulated phase-separable catalysis(TPSC) has been proposed and applied in the hydroformylation of higher olefins^{5,6}.

Here we reported the hydrogenation of styrene catalyzed by thermoregulated phase separable $Ru_3(CO)_{12}/PETPP$ complex catalyst. Under the conditions: $P(H_2)=2.0MPa$, T=90°C, catalyst/ substrate(mol/mol)=1/1000, 3 hrs, the $Ru_3(CO)_{12}/PETPP$ complex catalysts have shown good activity (**Table 1**). Compared with other catalysts, $Ru_3(CO)_{9}(TPP)_3$, while higher than the hydrophilic $Ru_3(CO)_{9}(TPPTS)_3$ and $Ru_3(CO)_{9}(TPPMS)_3$ (**Table 2**). At room temperature (T<CST), the $Ru_3(CO)_{12}/PETPP$ complex catalyst is insoluble in toluene. When heated to T>CST, the catalyst is soluble in toluene. At the reaction temperature (T<CST), the reaction proceeds homogeneously. After completion of the reaction, on cooling to room temperature (T<CST), the catalyst precipitates from toluene. Thus, the catalyst was separated by simple decantation and used directly in the recycling

^{*}E-mail: yhuawang@online.ln.cn

experiments. After ten reaction runs (Figure 1), the yield of ethylbenzene remained more than 95%.


Table 1 Effect of temperature on the hydrogenation of styrene with Ru₃(CO)₁₂/PETPP

Temperature (°C)	Conversion(%)	Yield(%)	Turnover(h ⁻¹)
90	100.0	99.5	332
80	93.7	93.1	310
70	60.4	60.1	200
60	40.1	40.0	133

Table 2 Effect of different P/Ru catalyst on the hydrogenation of styrene

Catalyst	Conversion(%)	Yield(%)	Turnover(h ⁻¹)
Ru ₃ (CO) ₉ (TPP) ₃	96.6	95.8	319
Ru ₃ (CO) ₉ (TPPMS) ₃	76.8	76.4	255
Ru ₃ (CO) ₉ (TPPTS) ₃	48.2	48.0	160
Ru ₃ (CO) ₁₂ /PETPP	100.0	99.5	332

Figure 1 Recycling efficiency of $Ru_3(CO)_{12}$ /PETPP complex catalyst

In conclusion, Ru₃(CO)₁₂/PETPP complex catalyst is active in the hydrogenation of styrene. The TPSC was characterized by homogeneous catalysis coupled with two-phase separation. The catalyst could be reused without regeneration and loss of catalytic activity.

Acknowledgement

We are grateful for the financial support from the National Natural Science Foundation of China (Grant no. 29906001).

References

- H. H. Lamb, B. C. Gates, H. Knozinger, Angew. Chem. Int. Ed. Engl., 1998, 27, 1127. 1.
- W. A. Herrmann, C. W. Kohlpainter, Angew. Chem. Int. Ed. Engl., 1993, 32, 1524. 2.
- 3.
- Z. L. Jin, X. L. Zheng, B. Fell, J. Mol. Catal. A: Chem., **1997**, 116, 55. R. F. Chen, X. Z. Liu, Z. L. Jin, J. Organomet. Chem., **1998**, 571, 201. 4.
- 5. Y. H. Wang, J. Y. Jiang, R. Zhang, X. H. Liu, Z. L. Jin, J. Mol. Catal. A: Chem., 2000, 157, 111.
- Y. H. Wang, J. Y. Jiang, X. W. Wu, F. Cheng, Z. L. Jin, Catal. Lett., in press. 6.

Received 7 January, 2002